pawb.fun is one of the many independent Mastodon servers you can use to participate in the fediverse.
This instance aimed at any and all within the furry fandom, though anyone is welcome! We're friendly towards members of the LGBTQ+ community and aiming to offer a safe space for our users.

Server stats:

300
active users

#tilingtuesday

10 posts10 participants0 posts today
Alexandre Muñiz<p>There are 18 hexominoes that can be traversed with orthogonal moves without revisiting cells. This tiling has a closed tour, where all of the cells in each hexomino are visited in an uninterrupted sequence. (I have a blog post in the works about this stuff, but it's not quite done, and Tuesday very nearly is.)</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a></p>
Rasmus<p>Enneagonal infinite tiling <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> (1/3)</p>
TimemiT<p>UltraFractal6 IFSBarnsley for <a href="https://mastodon.scot/tags/tilingtuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tilingtuesday</span></a></p>
n-gons<p>Sierpinski Pyramid Tiling for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> </p><p>This kind of pyramid is a quarter of a cube.</p><p><a href="https://mathstodon.xyz/tags/Voxel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Voxel</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/Fractal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Fractal</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a></p>
Heribert Schütz<p>Dear <a href="https://mastodon.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> community,</p><p>A while ago I implemented a graphical web app folding certain flat shapes to polyhedra: <a href="https://hcschuetz.github.io/polyhedron-star/dist/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">hcschuetz.github.io/polyhedron</span><span class="invisible">-star/dist/</span></a></p><p>A few tilings are included, but I'd like to add more and ask you for contributions.</p><p>A compatible tiling should fit with a triangular or a quad grid. I'm particularly (but not only) interested in tilings that are *not* invariant to reflections.</p>
C. Knodel<p>Happy <a href="https://mastodon.de/tags/tilingtuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tilingtuesday</span></a> everybody!This is made with <a href="https://mastodon.de/tags/openprocessing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openprocessing</span></a> and may be enhanced in the future.</p><p><a href="https://mastodon.de/tags/processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>processing</span></a> <a href="https://mastodon.de/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <a href="https://mastodon.de/tags/genart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>genart</span></a></p>
꧁ᐊ𰻞ᵕ̣̣̣̣̣̣́́♛ᵕ̣̣̣̣̣̣́́𰻞ᐅ꧂<p>⭕'དཔལ་བེའུ།*16 🥨<br>(I'm like 90% sure ðe orange bit forms a single loop)</p><p><a href="https://mastodon.gamedev.place/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mastodon.gamedev.place/tags/knots" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>knots</span></a> <a href="https://mastodon.gamedev.place/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://mastodon.gamedev.place/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mastodon.gamedev.place/tags/pixelart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pixelart</span></a> <a href="https://mastodon.gamedev.place/tags/abstract" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>abstract</span></a></p>
foldworks<p>Street decoration featuring eight-pointed stars, Buôn Ma Thuột, Vietnam<br><a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/Pattern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Pattern</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathsArt</span></a></p>
Bojidar Marinov<p>I've always enjoyed toying around with "knight polygons" - polygons whose every edge is a chess knight's move.<br>So, it was only natural to use them for a floral pattern (a truncated square tiling), for a lily flower origami.</p><p><a href="https://mastodon.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mastodon.social/tags/origami" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>origami</span></a> <a href="https://mastodon.social/tags/flowers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flowers</span></a></p>
Malwen<p><a href="https://toot.wales/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br>Created in <a href="https://toot.wales/tags/OneLab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OneLab</span></a> for Android</p>
Dani Laura (they/she/he)<p>I have found a novel family of rep-tiles which produce aperiodic tilings. The prototile is a triangle with smallest side 1 and biggest side 2, the other side is 1 &lt; x &lt;= 2. The family includes one pointed isosceles triangle, the right triangle of angles 30-60-90 (half an equilateral triangle), and other scalene, obtuse or acute, triangles. The first image shows relevant members of the family, the second the substitution rule. The isosceles triangle of the family has another already known aperiodic tiling ( <a href="https://tilings.math.uni-bielefeld.de/substitution/viper/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tilings.math.uni-bielefeld.de/</span><span class="invisible">substitution/viper/</span></a> ) which looks the same but is different because there the tile has no reflections, whereas here some tiles are reflected (in the case of the isosceles triangle the reflection makes a difference when applying the substitution). Figure 3 shows the difference between that tessellation and the one proposed here, mine has just four slopes. Last figure shows a zoom into one big instance of the tiling for the right triangle.<br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/Mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathart</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a></p>
Rasmus<p>Growth steps 1 - 12 of genus 289 oriented surface made of 1152 hexagonal tiles. <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a></p>
Jean-Baptiste Etienne<p>An other "<a href="https://mathstodon.xyz/tags/truchet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>truchet</span></a>" <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a> for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a></p>
Σ(i³) = (Σi)²<p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a></p>
꧁ᐊ𰻞ᵕ̣̣̣̣̣̣́́♛ᵕ̣̣̣̣̣̣́́𰻞ᐅ꧂<p>traitoR</p><p><a href="https://mastodon.gamedev.place/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mastodon.gamedev.place/tags/vibes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vibes</span></a> <a href="https://mastodon.gamedev.place/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://mastodon.gamedev.place/tags/abstract" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>abstract</span></a> <a href="https://mastodon.gamedev.place/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mastodon.gamedev.place/tags/mastoart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mastoart</span></a></p>
TimemiT<p>Just spotted the <a href="https://mastodon.scot/tags/tilingtuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tilingtuesday</span></a> tag..must have a few of them in my folders...here's a mandelbulber tiling.</p>
Malwen<p><a href="https://toot.wales/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br>Created in <a href="https://toot.wales/tags/OneLab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OneLab</span></a> for Android</p>
foldworks<p>Window, County Hall, Preston, Lancashire, England<br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>architecture</span></a> <a href="https://mathstodon.xyz/tags/window" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>window</span></a></p>
Alexandre Muñiz<p>I've been learning how to use Jaap Scherphuis' PolySolver more effectively lately. I previously tried manually to get symmetrical markings on a tiling with the 12 internal-edge-marked pentiamonds, but had to give up just short. This time I had PolySolver's help.</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a></p>
n-gons<p>A square decomposed into triangles, squares and crowns for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a></p><p><a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Art</span></a></p>